Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dichlorido(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline)zinc(II) 0.35-hydrate

Yu-E Qiu

Department of Chemistry, Dezhou University, Dezhou 253011, People's Republic of China

Correspondence e-mail: zyzh20060601@126.com

Received 7 October 2007; accepted 23 October 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; disorder in solvent or counterion; R factor = 0.044; wR factor = 0.108; data-to-parameter ratio = 17.9.

The title compound, $[ZnCl_2(C_{26}H_{20}N_2)] \cdot 0.35H_2O$, consists of one mononuclear dichlorido(2,9-dimethyl-4,7-diphenyl-1,10phenanthroline)zinc(II) molecule and a partial-occupancy water molecule. The Zn^{II} atom is coordinated by two N atoms of one phenanthroline molecule and two chloride ions in a tetrahedral geometry. In the structure there exist $O-H\cdots$ Cl hydrogen bonds and $\pi-\pi$ interactions [centroid–centroid = 4.035 (4) Å and vertical distance = 3.883 (4) Å], which lead to the formation of one-dimensional supramolecular chains. This compound is isostructural with the CuCl₂, NiI₂, NiBr₂ and PtI₂ adducts of the ligand 9-dimethyl-4,7-diphenyl-1,10-phenanthroline.

Related literature

For related literature, see: Butcher & Sinn (1977); Fanizzi *et al.* (1996); Green *et al.* (1984); Kinnunen *et al.* (2000); Klemens *et al.* (1989); Muniz & Nieger (2006); Sun *et al.* (2001); Wall *et al.* (1999); Wang *et al.* (2007).

Experimental

Crystal data $[ZnCl_2(C_{26}H_{20}N_2)] \cdot 0.35H_2O$ $M_r = 503.02$

Monoclinic, $P2_1/c$ a = 13.052 (3) Å b = 22.350 (5) Å c = 8.0698 (16) Å $\beta = 103.39 (3)^{\circ}$ $V = 2290.1 (9) \text{ Å}^{3}$ Z = 4

Data collection

Bruker SMART CCD area-detector	
diffractometer	
Absorption correction: multi-scan	
(SADABS; Bruker, 1998)	
$T_{\min} = 0.645, \ T_{\max} = 0.672$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.108$ S = 1.015246 reflections 293 parameters 2 restraints

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.55$ e Å⁻³ $\Delta \rho_{min} = -0.49$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1W-H1WA···Cl1	0.85	2.28	3.049 (10)	150
$O1W-H1WB\cdots Cl2^{1}$	0.85	2.26	3.091 (10)	167

Symmetry code: (i) x, y, z - 1.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SHELXTL* (Bruker, 1998); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97*; molecular graphics: *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *SHELXTL*.

The author thanks Professor Xiu-Ling Zhang for discussion and Dezhou University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2039).

References

- Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Butcher, R. J. & Sinn, E. (1977). Inorg. Chem. 16, 2334-2343.
- Fanizzi, F. P., Natile, G., Lanfranchi, M., Tiripicchio, A., Laschi, F. & Zanello, P. (1996). Inorg. Chem. 35, 3173–3182.
- Green, B. E., Kennard, C. H. L., Smith, G., Elcombe, M. M., Moore, F. H., James, B. D. & White, A. H. (1984). *Inorg. Chim. Acta*, 83, 177–189.
- Kinnunen, T.-J. J., Haukka, M., Pakkanen, T. T. & Pakkanen, T. A. (2000). J. Organomet. Chem. 613, 257–262.
- Klemens, F. K., Fanwick, P. E., Bibler, J. K. & McMillin, D. R. (1989). Inorg. Chem. 28, 3076–3079.
- Muniz, K. & Nieger, M. (2006). Angew. Chem. Int. Ed. 45, 2305-2308.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sun, S.-S., Zavalij, P. Y. & Lees, A. J. (2001). Acta Cryst. E57, m119-m121.
- Wall, M., Linkletter, B., Williams, D., Lebuis, A.-M., Hynes, R. C. & Chin, J. (1999). J. Am. Chem. Soc. 121, 4710–4711.
- Wang, J., Ye, J.-W. & Wang, Y. (2007). Acta Cryst. E63, o2007–o2008.

Mo $K\alpha$ radiation $\mu = 1.32 \text{ mm}^{-1}$

 $0.40 \times 0.30 \times 0.30$ mm

22571 measured reflections 5246 independent reflections

3836 reflections with $I > 2\sigma(I)$

T = 293 (2) K

 $R_{\rm int} = 0.038$

Acta Cryst. (2007). E63, m2835 [doi:10.1107/S1600536807052580]

Dichlorido(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline)zinc(II) 0.35-hydrate

Y.-E. Qiu

Comment

The crystal structures of 9-dimethyl-4,7-diphenyl-1,10-phenanthroline (Wang *et al.*, 2007) and its some metal complexes have been documented (Butcher & Sinn, 1977; Fanizzi *et al.*, 1996; Green *et al.*, 1984; Kinnunen *et al.*, 2000; Klemens *et al.*, 1989; Muniz & Nieger, 2006; Sun *et al.*, 2001; Wall *et al.*, 1999 and Wang *et al.*, 2007), which feature mononuclear structure. pi π The title compound, Zn(C₂₆H₂₀N₂)Cl₂·0.35H₂O (I) consists of mono-nuclear Zn(C₂₆H₂₀N₂)Cl₂ molecules and packing water molecules (Fig. 1). The center Zn^{II} atom locates on a normal position and is coordinated by two N atoms of one phenanthroline molecule and two chloride ions to form a tetrahedral geometry, with the bond distances and angles being normal. The dihedral angles between two benzene rings and phenanthroline ring are 39.4 (4)° and 45.8 (4)°, respectively. Furthermore, in the structure there exist O—H—Cl hydrogen bonds (Table 2) and weak π - π interactions [between rings C11—C14—C25—C26 and C11A—C14A—C25A—C26A (symmetry code for A: *x*, 1/2 – *y*, 1/2 + *z*); the centro-centro distance is 4.035 (4) Å, vertical distance is 3.883 (4)Å and dihedral angel is 22.3 (4)°] which lead to the formation of one-dimensional supramolecular chains arranged along the c direction (Fig. 2).

This compound is isostructural with the CuCl₂, NiBr₂, NiI₂ and PtI₂ adducts of the ligand, 9-dimethyl-4,7-diphenyl-1,10-phenanthroline (Butcher & Sinn, 1977; Fanizzi *et al.*, Kinnunen *et al.*, 2000 and Wall *et al.*, 1999).

Experimental

A mixture of 9-dimethyl-4,7-diphenyl-1,10-phenanthroline (36 mg, 0.1 mmol), $ZnCl_2$ (27 mg, 0.2 mmol) and terephthalic acid (17 mg, 0.1 mmol) in water/ethanol (8 ml, V_{5:1}) was sealed in a Teflon-lined stainless-steel Parr bomb that was heated at 443 K for 48 h. Yellow crystals of (I) were collected after the bomb was allowed to cool to room temperature over 36 h. The yield is 30% with respect to 9-dimethyl-4,7-diphenyl-1,10-phenanthroline.

Refinement

H atoms of organic ligands were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93 or 0.96Å and $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C,N)$. The s.o.f of water O atom was obtained in the refinement as 0.35 and so, the s.o.f parameters of the whole aquous molecule were kept fiked as 0.35 in the final refinement. The H atoms of water molecules were located in Fourier difference map and refined with bond restraints O—H = 0.85 (1) Å, and with $U_{iso}(H) = 1.2 U_{eq}(O)$.

Figures

Fig. 1. Displacement ellipsoid plot (30% probability) of the structure of (I).

Fig. 2. one-dimensional packing of molecules in (I) showing O—H—Cl hydrogen bonds and π - π interactions.

Dichlorido(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline)zinc(II) 0.35-hydrate

Crystal data	
$[ZnCl_2(C_{26}H_{20}N_2)] \cdot 0.35H_2O$	$F_{000} = 1030$
$M_r = 503.02$	$D_{\rm x} = 1.460 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 18099 reflections
a = 13.052 (3) Å	$\theta = 3.2 - 27.6^{\circ}$
b = 22.350 (5) Å	$\mu = 1.32 \text{ mm}^{-1}$
c = 8.0698 (16) Å	T = 293 (2) K
$\beta = 103.39 \ (3)^{\circ}$	Block, colorless
$V = 2290.1 (9) \text{ Å}^3$	$0.40 \times 0.30 \times 0.30 \text{ mm}$
Z = 4	

Data collection

Bruker SMART CCD area-detector diffractometer	5246 independent reflections
Radiation source: fine-focus sealed tube	3836 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.038$
T = 293(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 3.2^{\circ}$
Absorption correction: Multi-Scan (SADABS; Bruker, 1998)	$h = -16 \rightarrow 16$
$T_{\min} = 0.645, T_{\max} = 0.672$	$k = -29 \rightarrow 29$
22571 measured reflections	$l = -10 \rightarrow 10$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

$R[F^2 > 2\sigma(F^2)] = 0.044$	H atoms treated by a mixture of independent and constrained refinement
$w P(E^2) = 0.108$	$w = 1/[\sigma^2(F_0^2) + (0.0479P)^2 + 1.2738P]$
WR(T) = 0.108	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{max} < 0.001$
5246 reflections	$\Delta \rho_{max} = 0.55 \text{ e } \text{\AA}^{-3}$
293 parameters	$\Delta \rho_{min} = -0.49 \text{ e } \text{\AA}^{-3}$
2 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Zn1	0.24140 (2)	0.425932 (13)	0.91197 (4)	0.04537 (12)	
N1	0.13155 (16)	0.36139 (9)	0.8123 (3)	0.0406 (5)	
N2	0.33832 (16)	0.35180 (9)	0.9449 (3)	0.0382 (5)	
C1	-0.0159 (3)	0.43068 (13)	0.7480 (5)	0.0703 (10)	
H1A	0.0052	0.4478	0.8598	0.106*	
H1B	-0.0914	0.4288	0.7147	0.106*	
H1C	0.0099	0.4550	0.6685	0.106*	
C2	0.0288 (2)	0.36850 (12)	0.7496 (4)	0.0449 (6)	
C3	-0.0352 (2)	0.31954 (12)	0.6906 (4)	0.0454 (6)	
H3A	-0.1070	0.3257	0.6484	0.054*	
C4	0.0040 (2)	0.26217 (11)	0.6925 (3)	0.0402 (6)	
C5	-0.0698 (2)	0.21172 (12)	0.6376 (4)	0.0439 (6)	
C6	-0.1541 (2)	0.21785 (14)	0.4980 (4)	0.0514 (7)	
H6A	-0.1630	0.2536	0.4371	0.062*	
C7	-0.2252 (2)	0.17162 (17)	0.4476 (5)	0.0661 (9)	
H7A	-0.2809	0.1762	0.3531	0.079*	
C8	-0.2130 (3)	0.11838 (16)	0.5389 (6)	0.0734 (11)	
H8A	-0.2598	0.0870	0.5045	0.088*	
С9	-0.1316 (3)	0.11233 (14)	0.6801 (5)	0.0694 (10)	
H9A	-0.1245	0.0771	0.7431	0.083*	
C10	-0.0601 (2)	0.15829 (13)	0.7292 (4)	0.0539 (7)	
H10A	-0.0049	0.1535	0.8244	0.065*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C11	0.11470 (19)	0.25453 (11)	0.7525 (3)	0.0361 (5)	
C12	0.1703 (2)	0.19917 (11)	0.7515 (3)	0.0425 (6)	
H12A	0.1335	0.1657	0.7014	0.051*	
C13	0.2741 (2)	0.19432 (11)	0.8208 (4)	0.0427 (6)	
H13A	0.3066	0.1574	0.8192	0.051*	
C14	0.33589 (19)	0.24435 (11)	0.8971 (3)	0.0364 (6)	
C15	0.4453 (2)	0.24203 (11)	0.9772 (3)	0.0396 (6)	
C16	0.5051 (2)	0.18483 (11)	1.0058 (3)	0.0414 (6)	
C17	0.4670 (3)	0.13535 (13)	1.0770 (4)	0.0533 (7)	
H17A	0.4020	0.1375	1.1055	0.064*	
C18	0.5248 (3)	0.08287 (14)	1.1058 (4)	0.0640 (9)	
H18A	0.4984	0.0500	1.1531	0.077*	
C19	0.6214 (3)	0.07928 (14)	1.0643 (4)	0.0657 (9)	
H19A	0.6605	0.0441	1.0839	0.079*	
C20	0.6595 (2)	0.12777 (15)	0.9944 (4)	0.0589 (8)	
H20A	0.7243	0.1253	0.9654	0.071*	
C21	0.6025 (2)	0.18061 (13)	0.9663 (4)	0.0482 (7)	
H21A	0.6299	0.2135	0.9205	0.058*	
C22	0.4954 (2)	0.29529 (12)	1.0305 (3)	0.0437 (6)	
H22A	0.5673	0.2949	1.0790	0.052*	
C23	0.4414 (2)	0.34995 (11)	1.0139 (3)	0.0424 (6)	
C24	0.4954 (2)	0.40787 (13)	1.0754 (4)	0.0577 (8)	
H24A	0.4821	0.4365	0.9843	0.087*	
H24B	0.5699	0.4012	1.1124	0.087*	
H24C	0.4689	0.4229	1.1688	0.087*	
C25	0.28637 (19)	0.30029 (10)	0.8873 (3)	0.0353 (5)	
C26	0.17432 (19)	0.30565 (10)	0.8140 (3)	0.0345 (5)	
Cl1	0.27868 (8)	0.48510 (4)	0.71742 (13)	0.0771 (3)	
Cl2	0.21894 (8)	0.46162 (4)	1.15462 (11)	0.0745 (3)	
O1W	0.1051 (9)	0.4306 (5)	0.4394 (13)	0.137 (4)	0.35
H1WA	0.1338 (9)	0.4472 (5)	0.5341 (15)	0.165*	0.35
H1WB	0.1301 (9)	0.4445 (5)	0.3590 (14)	0.165*	0.35

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0496 (2)	0.02520 (15)	0.0623 (2)	-0.00321 (13)	0.01503 (16)	-0.00313 (14)
N1	0.0415 (12)	0.0298 (10)	0.0522 (13)	-0.0019 (9)	0.0143 (10)	-0.0037 (9)
N2	0.0397 (12)	0.0279 (10)	0.0469 (12)	-0.0045 (9)	0.0099 (10)	-0.0036 (9)
C1	0.0489 (17)	0.0406 (16)	0.119 (3)	0.0074 (14)	0.0142 (19)	-0.0041 (18)
C2	0.0400 (14)	0.0377 (14)	0.0587 (17)	0.0030 (11)	0.0152 (13)	-0.0008 (12)
C3	0.0345 (13)	0.0439 (15)	0.0584 (17)	-0.0002 (11)	0.0118 (13)	-0.0023 (13)
C4	0.0393 (14)	0.0397 (14)	0.0438 (15)	-0.0042 (11)	0.0140 (12)	-0.0046 (11)
C5	0.0399 (14)	0.0455 (15)	0.0507 (16)	-0.0077 (11)	0.0194 (13)	-0.0120 (12)
C6	0.0425 (15)	0.0564 (17)	0.0573 (18)	-0.0043 (13)	0.0159 (14)	-0.0123 (14)
C7	0.0433 (17)	0.077 (2)	0.076 (2)	-0.0097 (16)	0.0107 (16)	-0.0324 (19)
C8	0.0519 (19)	0.058 (2)	0.114 (3)	-0.0193 (16)	0.026 (2)	-0.034 (2)
C9	0.065 (2)	0.0414 (17)	0.109 (3)	-0.0102 (15)	0.033 (2)	-0.0080 (18)

C10	0.0502 (17)	0.0440 (16)	0.070 (2)	-0.0082 (13)	0.0199 (15)	-0.0072 (14)
C11	0.0361 (13)	0.0336 (12)	0.0405 (14)	-0.0035 (10)	0.0126 (11)	-0.0057 (10)
C12	0.0435 (15)	0.0328 (13)	0.0526 (16)	-0.0052 (11)	0.0138 (13)	-0.0134 (11)
C13	0.0473 (15)	0.0283 (12)	0.0542 (16)	0.0021 (11)	0.0154 (13)	-0.0081 (11)
C14	0.0397 (14)	0.0302 (12)	0.0405 (14)	0.0029 (10)	0.0116 (12)	-0.0028 (10)
C15	0.0423 (14)	0.0375 (13)	0.0393 (14)	0.0033 (11)	0.0101 (12)	-0.0019 (11)
C16	0.0449 (15)	0.0375 (14)	0.0402 (14)	0.0052 (11)	0.0066 (12)	-0.0041 (11)
C17	0.0637 (19)	0.0450 (16)	0.0550 (18)	0.0087 (14)	0.0214 (15)	0.0028 (13)
C18	0.090 (3)	0.0425 (17)	0.059 (2)	0.0114 (16)	0.0156 (19)	0.0071 (14)
C19	0.078 (2)	0.0503 (19)	0.059 (2)	0.0253 (17)	-0.0029 (18)	-0.0074 (15)
C20	0.0421 (16)	0.069 (2)	0.0606 (19)	0.0143 (15)	0.0009 (15)	-0.0153 (16)
C21	0.0436 (15)	0.0491 (16)	0.0484 (16)	0.0014 (12)	0.0033 (13)	-0.0076 (13)
C22	0.0382 (14)	0.0421 (14)	0.0470 (16)	-0.0007 (11)	0.0019 (12)	-0.0011 (12)
C23	0.0454 (15)	0.0341 (13)	0.0462 (15)	-0.0060 (11)	0.0077 (13)	-0.0018 (11)
C24	0.0515 (17)	0.0376 (15)	0.076 (2)	-0.0094 (13)	-0.0015 (16)	-0.0051 (14)
C25	0.0384 (13)	0.0303 (12)	0.0389 (14)	-0.0022 (10)	0.0122 (11)	-0.0043 (10)
C26	0.0379 (13)	0.0285 (11)	0.0388 (13)	-0.0002 (10)	0.0124 (11)	-0.0031 (10)
Cl1	0.0892 (6)	0.0537 (5)	0.1020 (7)	0.0040 (4)	0.0498 (6)	0.0240 (5)
Cl2	0.1134 (8)	0.0447 (4)	0.0694 (5)	0.0036 (4)	0.0291 (5)	-0.0131 (4)
O1W	0.156 (9)	0.166 (11)	0.094 (7)	-0.058 (8)	0.037 (7)	-0.009 (6)

Geometric parameters (Å, °)

Zn1—N1	2.062 (2)	C11—C12	1.435 (3)
Zn1—N2	2.064 (2)	C12—C13	1.345 (4)
Zn1—Cl1	2.1918 (9)	C12—H12A	0.9300
Zn1—Cl2	2.1960 (10)	C13—C14	1.432 (3)
N1—C2	1.329 (3)	С13—Н13А	0.9300
N1—C26	1.364 (3)	C14—C25	1.401 (3)
N2—C23	1.332 (3)	C14—C15	1.425 (4)
N2—C25	1.362 (3)	C15—C22	1.378 (4)
C1—C2	1.506 (4)	C15—C16	1.488 (3)
C1—H1A	0.9600	C16—C21	1.384 (4)
C1—H1B	0.9600	C16—C17	1.390 (4)
C1—H1C	0.9600	C17—C18	1.385 (4)
C2—C3	1.392 (4)	C17—H17A	0.9300
C3—C4	1.379 (4)	C18—C19	1.380 (5)
С3—НЗА	0.9300	C18—H18A	0.9300
C4—C11	1.424 (3)	C19—C20	1.367 (5)
C4—C5	1.483 (4)	C19—H19A	0.9300
C5—C6	1.387 (4)	C20—C21	1.386 (4)
C5—C10	1.395 (4)	C20—H20A	0.9300
C6—C7	1.386 (4)	C21—H21A	0.9300
С6—Н6А	0.9300	C22—C23	1.401 (4)
C7—C8	1.389 (5)	C22—H22A	0.9300
C7—H7A	0.9300	C23—C24	1.503 (4)
C8—C9	1.373 (5)	C24—H24A	0.9600
C8—H8A	0.9300	C24—H24B	0.9600
C9—C10	1.382 (4)	C24—H24C	0.9600

С9—Н9А	0.9300	C25—C26	1.450 (3)
C10—H10A	0.9300	O1W—H1WA	0.8535
C11—C26	1.407 (3)	O1W—H1WB	0.8497
N1—Zn1—N2	80.71 (8)	C13—C12—H12A	119.0
N1—Zn1—Cl1	113.10(7)	C11—C12—H12A	119.0
N2—Zn1—Cl1	110.20 (7)	C12—C13—C14	121.9 (2)
N1—Zn1—Cl2	112.20 (7)	С12—С13—Н13А	119.0
N2—Zn1—Cl2	112.41 (7)	C14—C13—H13A	119.0
Cl1—Zn1—Cl2	121.15 (4)	C25—C14—C15	117.3 (2)
C2—N1—C26	119.2 (2)	C25—C14—C13	117.8 (2)
C2—N1—Zn1	127.90 (17)	C15—C14—C13	124.9 (2)
C26—N1—Zn1	112.90 (16)	C22—C15—C14	117.6 (2)
C23—N2—C25	119.4 (2)	C22—C15—C16	120.0 (2)
C23—N2—Zn1	127.46 (16)	C14—C15—C16	122.4 (2)
C25—N2—Zn1	113.12 (16)	C21—C16—C17	118.5 (2)
C2—C1—H1A	109.5	C21—C16—C15	120.0 (2)
C2—C1—H1B	109.5	C17—C16—C15	121.5 (2)
HIA-CI-HIB	109.5	C18 - C17 - C16	120.7(3)
C2-C1-H1C	109.5	C18—C17—H17A	119.7
H1A - C1 - H1C	109.5	C16—C17—H17A	119.7
HIB-C1-HIC	109.5	C19-C18-C17	120.1 (3)
N1 - C2 - C3	120.6 (2)	C19-C18-H18A	119.9
N1 - C2 - C1	117.9(2)	C17 - C18 - H18A	119.9
C_{3} C_{2} C_{1}	1215(2)	C_{20} C_{19} C_{18}	119.6 (3)
$C_{4} = C_{3} = C_{2}$	121.3(2) 122.4(2)	C_{20} C_{19} H_{19A}	120.2
C4 - C3 - H3A	1122.4 (2)	C_{18} C_{19} H_{19A}	120.2
C_{2} C_{3} H_{3} A	118.8	C19 - C20 - C21	120.2 120.7(3)
$C_2 = C_3 = C_1 + C_1 + C_2$	117.4(2)	$C_{19} = C_{20} = H_{20A}$	110.6
$C_{3}^{-} C_{4}^{-} C_{5}^{-}$	1103(2)	$C_{1}^{21} - C_{20}^{20} - H_{20}^{20}$	119.6
$C_{11} - C_{4} - C_{5}$	117.3(2)	$C_{21} = C_{20} = H_{20} = H_{20}$	119.0
C6 - C5 - C10	123.3(2) 118.2(3)	$C_{10} = C_{21} = C_{20}$	120.5 (5)
C6 - C5 - C4	110.2(3) 1204(3)	C_{10} C_{21} H_{21A}	119.8
$C_{0} = C_{0} = C_{1}$	120.4(3)	$C_{20} = C_{21} = H_{21} R$	117.0 122.1(2)
$C_{10} - C_{10} - C_{10}$	121.5(3)	$C_{15} = C_{22} = C_{23}$	122.1 (2)
$C_{7} = C_{6} = C_{5}$	121.0 (3)	$C_{13} = C_{22} = H_{22}A$	118.9
$C_{7} = C_{0} = H_{0}$	119.5	N2 C23 C22	110.3
C_{5}	119.5	N2 C23 C24	120.3(2)
$C_{0} = C_{1} = C_{0}$	119.8 (3)	112 - 223 - 224	117.0(2)
$C_{0} = C_{1} = H_{1}$	120.1	$C_{22} = C_{23} = C_{24}$	122.1 (2)
$C_{0} = C_{1} = \Pi/A$	120.1	$C_{23} = C_{24} = H_{24} R$	109.5
$C_{2} = C_{3} = C_{1}$	119.7 (5)	$H_{24A} = C_{24} = H_{24B}$	109.5
C_{2}	120.1	124A - C24 - 124D	109.5
C^{2} C^{2} C^{10}	120.1	$\begin{array}{c} C23 \\ \hline \\ C23 \\ \hline \\ C24 \\ \hline C$	109.5
C_{0}	120.4 (3)	H24A - C24 - H24C	109.5
$C_0 = C_2 = D_2 A$	117.0	$\Pi_{24} D - U_{24} - \Pi_{24} U_{14}$	109.3
C_{10} C_{10} C_{5}	117.0	112 - 0.23 - 0.14	123.2(2)
$C_{2} = C_{10} = U_{10A}$	120.8 (3)	1N2 - C23 - C20	110.4(2) 120.2(2)
C5 C10 U10A	119.0	14-23-26	120.3(2)
C5—C10—H10A	119.6	NI-C26-C11	123.1 (2)
C26—C11—C4	117.2 (2)	N1—C26—C25	116.8 (2)

C26—C11—C12	117.6 (2)	C11—C26—C25	120.0 (2)
C4—C11—C12	125.2 (2)	H1WA—O1W—H1WB	111.0
C13—C12—C11	121.9 (2)		
N2—Zn1—N1—C2	179.0 (2)	C25-C14-C15-C16	175.9 (2)
Cl1—Zn1—N1—C2	-72.9 (2)	C13-C14-C15-C16	-6.5 (4)
Cl2—Zn1—N1—C2	68.5 (2)	C22-C15-C16-C21	-46.7 (4)
N2—Zn1—N1—C26	-1.11 (17)	C14—C15—C16—C21	133.9 (3)
Cl1—Zn1—N1—C26	106.99 (17)	C22-C15-C16-C17	131.2 (3)
Cl2—Zn1—N1—C26	-111.63 (17)	C14—C15—C16—C17	-48.1 (4)
N1—Zn1—N2—C23	-179.3 (2)	C21—C16—C17—C18	-0.7 (4)
Cl1—Zn1—N2—C23	69.4 (2)	C15—C16—C17—C18	-178.7 (3)
Cl2—Zn1—N2—C23	-69.0 (2)	C16—C17—C18—C19	0.2 (5)
N1—Zn1—N2—C25	0.58 (17)	C17—C18—C19—C20	-0.2 (5)
Cl1—Zn1—N2—C25	-110.73 (17)	C18—C19—C20—C21	0.7 (5)
Cl2—Zn1—N2—C25	110.86 (17)	C17—C16—C21—C20	1.2 (4)
C26—N1—C2—C3	1.8 (4)	C15—C16—C21—C20	179.2 (3)
Zn1—N1—C2—C3	-178.4 (2)	C19—C20—C21—C16	-1.2 (5)
C26—N1—C2—C1	-179.5 (3)	C14—C15—C22—C23	2.5 (4)
Zn1—N1—C2—C1	0.4 (4)	C16—C15—C22—C23	-176.9 (3)
N1—C2—C3—C4	-0.6 (4)	C25—N2—C23—C22	-1.4 (4)
C1 - C2 - C3 - C4	-179.3(3)	Zn1-N2-C23-C22	178.47 (19)
C2-C3-C4-C11	-2.1(4)	$C_{25} - N_{2} - C_{23} - C_{24}$	179.9 (2)
$C_2 - C_3 - C_4 - C_5$	176.2 (3)	Zn1-N2-C23-C24	-0.3(4)
C3—C4—C5—C6	40.6 (4)	C15—C22—C23—N2	0.0 (4)
C11—C4—C5—C6	-141.1 (3)	C15—C22—C23—C24	178.6 (3)
C3—C4—C5—C10	-136.0 (3)	C23—N2—C25—C14	0.2 (4)
C11—C4—C5—C10	42.3 (4)	Zn1—N2—C25—C14	-179.64 (19)
C10—C5—C6—C7	-1.7 (4)	C23—N2—C25—C26	179.9 (2)
C4—C5—C6—C7	-178.4 (3)	Zn1—N2—C25—C26	0.0 (3)
C5—C6—C7—C8	0.6 (5)	C15—C14—C25—N2	2.2 (4)
C6—C7—C8—C9	1.1 (5)	C13—C14—C25—N2	-175.5 (2)
C7—C8—C9—C10	-1.7 (5)	C15—C14—C25—C26	-177.4 (2)
C8—C9—C10—C5	0.6 (5)	C13—C14—C25—C26	4.8 (4)
C6—C5—C10—C9	1.1 (4)	C2—N1—C26—C11	-0.1 (4)
C4—C5—C10—C9	177.7 (3)	Zn1—N1—C26—C11	-179.98 (19)
C3—C4—C11—C26	3.6 (4)	C2—N1—C26—C25	-178.7 (2)
C5-C4-C11-C26	-174.7 (2)	Zn1—N1—C26—C25	1.5 (3)
C3—C4—C11—C12	-175.0 (3)	C4-C11-C26-N1	-2.6 (4)
C5—C4—C11—C12	6.7 (4)	C12—C11—C26—N1	176.1 (2)
C26—C11—C12—C13	6.1 (4)	C4—C11—C26—C25	175.9 (2)
C4—C11—C12—C13	-175.4 (3)	C12—C11—C26—C25	-5.4 (4)
C11—C12—C13—C14	-1.2 (4)	N2-C25-C26-N1	-1.0 (3)
C12—C13—C14—C25	-4.3 (4)	C14—C25—C26—N1	178.7 (2)
C12—C13—C14—C15	178.1 (3)	N2-C25-C26-C11	-179.6 (2)
C25—C14—C15—C22	-3.5 (4)	C14—C25—C26—C11	0.1 (4)
C13—C14—C15—C22	174.1 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1W—H1WA…Cl1	0.85	2.28	3.049 (10)	150
O1W—H1WB····Cl2 ⁱ	0.85	2.26	3.091 (10)	167
Symmetry codes: (i) $x, y, z-1$.				

Fig. 1

